Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy.
نویسندگان
چکیده
Electroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy. These mice show spontaneous SWD, and their features can be compared to that of BR/Orl mice, which are free of SWD. In addition, since gap junctions may modulate the efficacy of these connections, their implications in pharmacologically-induced epileptiform discharges were studied in the same slices. The thalamus and neocortex were independently stimulated and the electrically-evoked responses in both structures were recorded from the same slice. The synaptic efficacy of thalamocortical and corticothalamic connections were assessed by measuring the dynamic range of synaptic field potential changes in response to increasing stimulation strengths. The connection efficacy was weaker in epileptic mice however, this decrease in efficacy was more pronounced in thalamocortical afferents, thus introducing an imbalance in the reciprocal connections between the cortex and thalamus. However, short-term facilitation of the thalamocortical responses were increased in epileptic mice compared to non-epileptic animals. These features may favor occurrence of rhythmical activities in thalamocortical networks. In addition, carbenoxolone (a gap junction blocker) decreased the cumulative duration of 4-aminopyridine-induced ictal-like activities, with a slower time course in epileptic mice. However, the 4-aminopyridine-induced GABA-dependent negative potentials, which appeared to trigger the ictal-like activities, remained. Our results show that the balance of the reciprocal connections between the thalamus and cortex is altered in favor of the corticothalamic connections in epileptic mice, and suggest that gap junctions mediate a stronger cortical synchronization in this strain.
منابع مشابه
مروری بر صرع کوچک با رویکرد به علوم پایه
Abstract Background: Epilepsy is one of the most common neurological disorders. Seizures could be presented as general or focal attacks. Absence epilepsy is one of the main forms of the general epilepsy and associated with sudden impairment of consciousness and non/convulsive generalized attacks. The prevalence of absence epilepsy was estimated about 10% of all types of seizures and seizures o...
متن کاملP 145: A Review of Animal Models of Absence Epilepsy
The most common type of childhood-onset epilepsy syndrome is childhood absence epilepsy (CAE) with well-defined electro clinical features but unknown pathological basis. The incidence of absence epilepsy is about 2 and 8 out of every 100 000 children up to the age of 16, and the prevalence is 2 and 10% of children with any form of epilepsy. Children with CAE suffer from high rate of pretreatmen...
متن کاملExperimental Models of Absence Epilepsy; A Review Article
Background: Absence epilepsy is a brief non-convulsive seizure that associated with sudden abrupt in consciousness. Because of the unpredictable occurrence of absence seizures and ethic limitation of human investigation on the pathogenesis and drug assessment led to the tendency to animal models. The aim of this paper is reviewing the advantages and disadvantages of several animal models of non...
متن کاملSelective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy.
The properties of voltage-dependent calcium currents were compared in thalamic neurons acutely dissociated from a rat model of absence epilepsy, designated as Genetic Absence Epilepsy Rat from Strasbourg (GAERS), and from a Nonepileptic Control strain (NEC). Two populations of neurons were isolated: thalamocortical relay neurons of the nucleus ventrobasalis (VB) and neurons of the nucleus retic...
متن کاملCortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.
Absence seizures are the most pure form of generalized epilepsy. They are characterized in the electroencephalogram by widespread bilaterally synchronous spike-wave discharges (SWDs), which are the reflections of highly synchronized oscillations in thalamocortical networks. To reveal network mechanisms responsible for the initiation and generalization of the discharges, we studied the interrela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1525 شماره
صفحات -
تاریخ انتشار 2013